План

1. ТМО різних методичних підходів до формування поняття натурального числа і нуля. Натуральний ряд чисел. Особливості десяткової позиційної системи числення.

2. ТМО вивчення нумерації чисел в межах 100

3. ТМО вивчення нумерації чисел в межах 1000

4. ТМО вивчення нумерації чисел у концентрі «Багатоцифрові числа» 

1. ТМО різних методичних підходів до формування поняття натурального числа і нуля. Натуральний ряд чисел. Особливості десяткової позиційної системи числення.

Основним завданням початкового курсу математики є формування у дітей поняття про цілі невід'ємні числа та дії над ними. Першою темою із арифметичної частини програми є тема "Нумерація", яка розглядається в кожному із концентрів: "Десяток", "Сотня", "Тисяча" і "Багатоцифрові числа". Під нумерацією розуміють способи називання, читання та записування чисел. Розрізняють усну і письмову нумерацію. Незалежно від концентру при вивченні нумерації чисел діти ознайомлюються з операціями лічби і вимірювання, читанням і написанням чисел, співвідношенням між числом і цифрою, з різними способами одержання чисел (додаванням 1 до даного числа, відніманням 1 від даного числа, як суми двох доданків), з послідовністю цілих невід'ємних чисел від 0 чи 1 до найбільшого числа у цьому концентрі, з принципом побудови натурального ряду чисел, з властивостями множини натуральних чисел, з десятковим складом чисел, з кількісним і порядковим значенням чисел.

Є 3 теорії цілих невід’ємних чисел: 

1) кількісна або теоретико-множинна, в якій число трактується як спільна властивість класу скінченних еквівалентних множин; 

2) порядкова або аксіоматична, в якій натуральне число визначається з допомогою системи аксіом та операції “слідувати за..."; 

3) теорія, яка розглядає натуральне число як результат вимірювання величини. 

Аналіз цих теорій свідчить, що основними поняттями у кожній з них є “число”, “величина”, “відношення”, “множина”. Відповідно до цих теорій існують різні теоретико-методичні підходи до формування поняття натурального числа і нуля. Залежно від того, яка з теорій покладена в основу, будуються підручники і розробляється методика формування поняття натурального числа і нуля у молодших школярів на уроках математики. Формування у дітей цих понять є одним із найважливіших завдань початкового курсу математики.

Формування поняття натурального числа та нуля відбувається і за допомогою операцій над множинами (об’єднання множин, вилучення частини множини), і за допомогою операції вимірювання величин (визначення довжини відрізка, площі фігури, маси тіла тощо), і за допомогою встановлення відношення порядку (який за порядком, перед, після тощо). Для того, щоб дати кількісну характеристику множини, слід знайти порядок розміщення чисел в натуральному ряді.

Натуральний ряд чисел. Натуральні числа розміщуються у певному порядку, причому виконуються такі умови: один є натуральним числом, яке не слідує ні за яким натуральним числом; за будь-яким натуральним числом безпосередньо слідує лише одне натуральне число, яке є сумою попереднього числа і одиниці; будь-якому відмінному від одиниці натуральному числу безпосередньо передує лише одне натуральне число, яке є різницею даного числа і одиниці. Так розміщені натуральні числа називають натуральним рядом чисел. Частина натурального ряду чисел, починаючи від одиниці до даного числа, називається початковим відрізком натурального ряду.

Особливістю початкового курсу математики є те, що при формуванні поняття числа діти спочатку знайомляться з 0 як із значком, тобто цифрою, яку використовують для позначення числа 10, і лише після ознайомлення дітей із дією віднімання 0 з'являється як число, яке є результатом дії віднімання у випадках виду 5–5=0.

У курсі математики початкових класів з метою узагальнення числових уявлень діти спочатку неявно, а в кінці 4-го класу і явно, знайомляться з десятковою позиційною системою числення та її особливостями. Система числення може бути двійковою, трійковою, десятковою тощо, а нумерація - усною і письмовою, позиційною і непозиційною, римською, старослов’янською, індійською та ін. У кожній системі числення числа записують за допомогою певних знаків - цифр. У позиційних системах числення значення кожної цифри залежить від того, на якому місці вона стоїть в записі числа.Особливості десяткової позиційної системи числення. У цій системі для запису будь-якого числа використовують всього десять знаків (цифр) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Всяка скінченна послідовність цифр, яка не розпочинається з нуля, становить деяке число, причому кожна цифра у цьому записі означає відповідну кількість так званих розрядних одиниць. Так, наприклад, запис а=74362 означає число, яке складається з двох одиниць (двох одиниць першого розряду), 6 десятків (6 одиниць другого розряду), 3 сотень (3 одиниць третього розряду), 4 тисяч (4 одиниць четвертого розряду) і 7 десятків тисяч (7 одиниць п’ятого розряду). Назви всіх чисел у десятковій позиційній системі числення утворюються з невеликої кількості основних назв: один, два, три, чотири, п’ять, шість, сім, вісім, дев’ять, десять, сорок, дев’яносто, сто, тисяча, мільйон, мільярд, трильйон, квінтильйон, секстильйон, септильйон, октильйон тощо. В основі запису чисел у цій системі числення лежить принцип позиційного (помісцевого) значення цифр, який полягає в тому, що значення цифри залежить не тільки від її вигляду, а й від місця (позиції), яке вона займає в зображенні запису цього числа.

Підготовчий період,його особливості у зв’язку з навчанням 6-річок.

Діти шестирічного віку відрізняються підвищеною емоційністю і наслідуванням, схильністю до активного розвитку мови і пізнавальних процесів. Завдяки цьому шестирічки легко засвоюють необхідні ЗУН. Для досягнення успіху в процесі навчання математики шестирічок вчитель повинен враховувати таке:

необхідною умовою успішної адаптації дитини до навчальної діяльності є забезпечення взаємозв’язку між ігровою і навчальною діяльністю учнів, бо перша з них - ігрова - була ведучою у дошкільному періоді;

без відповідної роботи з формування у шестирічок умінь вчитися діти, не володіючи ними, не зможуть впоратися навіть з найменшими труднощами у навчанні;

необхідною умовою для успішного оволодіння курсом математики першого класу є надання своєчасної допомоги шестирічкам і одночасне спонукання їх до самостійності з обов’язковим дозволом при цьому "пробувати і помилятися";

створення у процесі навчання умов для розвитку допитливості, розширення кола інтересів дітей, вироблення у них характеру, сили волі, наполегливості;

необхідною умовою організації навчального процесу є забезпечення формування у процесі навчання моральних основ спілкування з ровесниками та дорослими;

Одним із найважливіших завдань є розвиток мислення, мови, мовлення, пам’яті, уваги, оскільки не всі діти, що прийшли до школи, досягли такого їх розвитку, щоб успішно оволодіти математикою. Для уроків математики потрібно підбирати завдання, які вимагають від дітей самостійних спостережень, порівнянь окремих предметів чи їх груп, класифікації об’єктів.

Для того, щоб досягти успіхів у розвитку пізнавальних здібностей, при розв’язанні навчальних завдань курсу математики, потрібно постійно спиратися на життєвий (хоча ще і не дуже багатий) досвід дітей, забезпечуючи систематичне його збагачення. Важливим завданням вивчення математики у 1класі є формування загальних навчальних умінь, бо це забезпечуватиме свідоме і міцне засвоєння математичного матеріалу. Нарешті, вивчення математики шестирічками повинне забезпечити формування передбачених вимогами програми математичних знань, вмінь і навичок.

Особливістю підручника для першого класу є те, що його перші сторінки містять достатньо вправ, спрямованих на розвиток дітей, на виховання у них спостережливості, уміння порівнювати, підмічати певні закономірності, робити узагальнення. Пояснення нового матеріалу починається з різноманітних демонстрацій, які проводяться вчителем або учнями біля дошки, чи з практичної роботи. Після цього проводиться робота з індивідуальним дидактичним матеріалом за партою, у ході якої вчитель надає допомогу тим учням, які її потребують. Після цього ведеться колективна перевірка результату або пояснення прийому виконання завдання. Далі корисно провести роботу за підручником під керівництвом вчителя, потім практично попрацювати з іншим лічильним матеріалом і, нарешті, провести самостійну роботу у зошитах за завданням, яке роз’яснив вчитель біля дошки.

Характеристика роботи

Контрольна

Кількість сторінок: 15

Безкоштовна робота

Закрити

Методика викладання математики в початкових класах

Замовити дану роботу можна двома способами:

  • Подзвонити: (097) 844–69–22 та (050) 297–73–76
  • Заповнити форму замовлення:
Не заповнені всі поля!
Обов'язкові поля до заповнення «ім'я» і одне з полів «телефон» або «email»

Щоб у Вас була можливість впевнитись в наявності обраної роботи, і частково ознайомитись з її змістом, ми можемо за бажанням відправити частини даної роботи безкоштовно. Всі роботи виконані в форматі Word згідно з усіма вимогами щодо оформлення даних робіт.