ЗМІСТ

ВСТУП

1. Про закон кратних співвідношень

2. Гіпотеза Проута

3. Загадка нецілочисленності атомної ваги елементів

4. Зважування "мішка" атомів

5. Визначення мас ізотопів з допомогою мас-спектрографа

6. Залежність маси електрона від швидкості

7. Відкриття нейтрона і визначення його маси

8. Визначення маси мезонів, гіперонів і, можливо, кварків

ВИСНОВКИ

ЛІТЕРАТУРА

7. Відкриття нейтрона і визначення його маси

На початку XX ст. були відомі лише дві елементарні частки ‑ електрон і протон і лише дві їх основні характеристики ‑ електричний заряд і маса.

В відповідності із цим представленням про склад речовини в 1911 р. Ернестом Резерфордом (1871-1937 рр.) була запропонована модель атома у вигляді важкого позитивно зарядженого ядра, навколо якого обертаються негативно заряджені електрони. При цьому говорили, що ядра атомів складаються з протонів і нейтронів.

Самий легкий з елементів - водень - має атомну вагу рівну одиниці, а електричний заряд його ядра рівний +1. Ядро атома водню складається з одного протону, навколо якого обертається один електрон. Згідно з моделлю Резерфорда, більш важкі атоми мають ядра, які складаються з декількох протонів і нейтронів, а біля ядер обертається група електронів.

Ще в 1900 р. Максом Планком (1858-1947 рр.) в науку було введено поняття про дискретність енергії. Твердження про те, що будь-яка система при будь-яких процесах може поглинати і віддавати енергію не неперервно, а лише окремими порціями, квантами, знайшло дослідне підтвердження.

В 1913 р. Нільс Бор (1885-1962 рр.) розробив нову модель атома. При цьому, в відповідності з думками Планка, він постулював, що момент обертання електронів навколо ядра не довільний, а обов'язково рівний цілому кратному деякої величини h, тобто 1h, 2h або взагалі nh. Постійна Планка h=(6,628169±0,000028)×1034 Дж×с є мінімальною порцією дії. З цього положення звичайно слідує, що електрони можуть обертатися навколо ядра не по довільних, а лише по визначених - стаціонарних орбітах.

Модель Бора була дуже плодовита, з її допомогою вдалося пояснити деякі важливі закономірності мікросвіту, частково визначити довжини хвиль, що випромінюються атомами.

Успіх моделі атому Бора був великим, але не повним. Число електронних ліній, що спостерігались на досліді, в окремих випадках було більшим того, яке випливає з цієї моделі. Там, де згідно з теорією Бора повинна бути одна лінія, іноді їх було дві або три. Особливо великі і непереборні труднощі виникли при спробах пояснити з допомогою моделі атома Бора вплив на світло магнітного поля.

Можна було очікувати, що розщеплення спектральних ліній в магнітному полі відсутнє в відповідності з числом можливих орієнтацій орбітального магнітного моменту. Дійсно, такий ефект спостерігається і носить назву нормального ефекту Зеємана. Однак в деяких випадках поряд з цим спостерігається розщеплення на більше число ліній, яке називають аномальним ефектом Зеємана.

Аномальний ефект Зеємана одержав пояснення з допомогою уявлень про магнітний момент і спін електрона. Справді, так як в магнітному полі електрони переорієнтовуються, то на це потрібна деяка додаткова енергія. Таким чином, утворюються додаткові рівні енергії і при випромінюванні квантів світла в магнітному полі одержується більше число спектральних ліній, ніж без нього.

В 1930 році Боте і Беккер знайшли, що при опроміненні a-частками легкого металу берилію виникає сильно проникливе випромінювання. Поставивши на шляху такого випромінювання товсту металеву пластинку, вчені легко встановили, що це не електрони і не протони, так як ці частки поглинаються в тонкому шарі металу. Залишалося допустити, що це g-випромінювання, так як інших іонізуючих випромінювань тоді ще не було відомо. Невідоме випромінювання, проходячи через свинцеву пластинку товщиною 5 см, послаблювалось вдвоє. Звідси випливало, що якщо це g-випромінювання, то воно повинно мати енергію 5 МеВ.

Трудність була вирішена Чедвіком, який зрозумів, що невідоме випромінювання представляє собою потік часток, які мають масу приблизно таку ж, як і протони і не мають електричного заряду. Вони були названі нейтронами.

За даними, які одержали до 1972 року маса спокою нейтрона mn=(1,6749575±0,0000087)×10-27 кг або 1,00866520±0,00000010 а. о. м. Спін нейтрона, так як і протона, був рівним тобто, напівцілим.

Ідея про протон-нейтронний склад атомних ядер була правильною і плодотворною. В наступні роки протон-нейтронна модель ядра одержала подальший розвиток.

Дальше дослідження нейтронів показало, що ці частки нестійкі. Через деякий час нейтрон самовільно перетворюється в протон, електрон і антинейтрино. Маса спокою нейтрона більша маси спокою протона і електрона, разом взятих, тому ця ядерна реакція йде з виділенням енергії, яку і виносять породжені частки.

Дослідження нейтрино і антинейтрино показали, що ці частки мають спін і не мають електричного заряду. Їх маса спокою рівна нулю. Вони дуже слабо взаємодіють з речовиною і тому володіють надзвичайно великою проникною здатністю. Беручи участь в багатьох ядерних перетвореннях, нейтрино і антинейтрино забирають помітну частину енергії.


8. Визначення маси мезонів, гіперонів і, можливо, кварків

В 1936 році Андерсон і Неддермайєр при вивченні космічних променів з допомогою камери Вільсона відкрили частку, яка була важча за електрон, але легше від протона. Для вияснення її властивостей в першу чергу потрібно було виміряти масу і заряд. Визначення маси чистки по її сліду в камері Вільсона робиться так: камера розміщується в сильне магнітне поле. При цьому траєкторія частки викривлюється, а величина цього викривлення виявляється пропорційною силі магнітного поля і обернено пропорційною кількості руху та самої частки.

Таким чином, Андерсон і Неддермайєр встановили, що нова частка відрізняється від електрона і протона і має масу, рівну близько 200 електронних мас me, і одиничний електричний заряд. Ця частка одержала назву m-мезон.

В 1947 р. Латтес, Мюгерхед, Оккіамн і Пауел при роботі з фотографічними емульсіями виявили на них сліди нової частки. На одній з таких фотографій було видно, що ця частка, проходячи деякий шлях в емульсії, розпадається, породжуючи другу частку, а та також, проходячи деяку відстань в емульсії, в свою чергу розпадається і породжує ще одну частку.

Вивчення густини слідів показало, що слід зліва більш густіший, а слід справа ще менш густий. Виявилось, що середня поздовжня дільниця відповідає частці, маса якої набагато більша 200 me і ідентифікується з m-мезоном. Тонкий слід справа відповідає електрону, а більш товстий справа відповідає частинці з масою, близькою до 270me. Ця частка була названа p-мезоном.

При подальших дослідженнях були знайдені p-мезони трьох типів: p+, p- і p0-мезони, тобто позитивні, негативні і нейтральні. За фотографіями слідів з великою точністю була визначена їх маса, яка у p+і p--мезоні вбула рівною 273me, а у p0-мезона рівна 264me. Середній час життя p+і p--мезонів рівний 2,55´10-8 с, а у p0-мезона рівний 1,80´10-16 с.

Такий метод використовується при визначенні маси дуже короткоживучих часток, так як їх слід в камері є дуже коротким. На протязі подальших років були відкриті частки з масою, рівною 966me, 974me(к-мезони) і ціла група часток з масою від 2183me до 2580me, що отримали назву гіперонів. Середній час їх життя 10-8-10-10 с.


ВИСНОВКИ

Ми бачимо, що вивчаючи мікросвіт вчені одержали відповіді лише на частину своїх питань. Однак ці відповіді надзвичайно поглибили знання і корінним чином перетворили техніку. Так, наприклад, розуміння деяких ядерних реакцій дозволило збудувати ядерну енергетику і пояснити звідки беруться величезні енергетичні ресурси зірок. Ще багато задач не розв’язано. Але нерозв’язані задачі якщо тільки правильно поставлені питання є передвісником майбутніх відкриттів.


ЛІТЕРАТУРА

1.Завельский Ф.С. Масса и ее измерения. - М. - 1972. - 127 с.

2.Гамсей В., Оствальд В. Из истории химии.- Пер. с англ. - М.: Госиздат. - 1983. - 94 с.

3.Астон Ф.В. Масс-спектры и изотопы.- Пер. с англ. - М.: Изд-во иностр. лит. 1948. - 231 с.

4.Форд К. Мир элементарных частиц.- Пер. с англ. - М.: Мир. - 1965. - 167 с.

5.Власов Н.А. Антивещество. - М.: Атомиздат. - 1966. - 154 с.

6.Джуа М. История химии.- Пер. с англ. - М.: Мир. - 1961. - 226 с.

Характеристика роботи

Реферат

Кількість сторінок: 23

Безкоштовна робота

Закрити

Методи визначення мас мікрочасток

Замовити дану роботу можна двома способами:

  • Подзвонити: (097) 844–69–22
  • Заповнити форму замовлення:
Не заповнені всі поля!
Обов'язкові поля до заповнення «ім'я» і одне з полів «телефон» або «email»

Щоб у Вас була можливість впевнитись в наявності обраної роботи, і частково ознайомитись з її змістом, ми можемо за бажанням відправити частини даної роботи безкоштовно. Всі роботи виконані в форматі Word згідно з усіма вимогами щодо оформлення даних робіт.